Neural Databases

From Natural Language Processing to Neural Databases

Fabrizio Silvestri

James Thorne Cambridge

Majid Yazdani Facebook Al

Marzieh Saeidi Facebook Al

Sebastian Riedel Facebook Al

Alon Halevy Facebook Al

• J. Thorne, M. Yazdani, M. Saeidi, F. Silvestri, S. Riedel, and A. Halevy. From natural language processing to neural databases. PVLDB 2021

• J. Thorne, M. Yazdani, M. Saeidi, F. Silvestri, S. Riedel, and A. Halevy. Database reasoning over text. To appear in ACL 2022.

Introduction

What is a Database?

Example

INSERT INTO	People (PersonID, PersonName, Country) VALUES (123, 'Fabrizio Silvestri', 'Italy');
INSERT INTO	People (PersonID, PersonName, Country) VALUES (789, 'Marzieh Saeidi', 'UK');
INSERT INTO	Jobs (JobID, JobDescription) VALUES (111, 'Software Engineer')
INSERT INTO	Jobs (JobID, JobDescription) VALUES (123, 'Research Scientist')
INSERT INTO	PeopleJobs (PersonID, JobID) VALUES (123, 111)
INSERT INTO	PeopleJobs (PersonID, JobID) VALUES (789, 123)
SELECT	p.PersonName
FROM	People p
JOIN	PeopleJobs pj
	ON (p.PersonID = pj.PersonID)
JOIN	Jobs j
	ON (pj.JobID = j.JobID)
WHERE	j.JobDescription = "Research Scientist"

Database's Core Component: The Schema

" The database schema of a database is its structure described in a formal language supported by the database management system (DBMS). The term 'schema' refers to the organization of data as a blueprint of how the database is constructed (divided into database tables in the case of relational databases). "

from Wikipedia

Problem Definition

What if... We Removed Schema from Databases?

Is it QA?

- QA tasks deal with questions posed in natural language:
 - When were the Normans in Normandy?
 - Which kicker had most field goals?
 - Several datasets, i.e., SQuAD, DROP, MSMARCO-QA, etc.
- In QA typically the answer to a query is located within a passage or multiple passages that are (usually) locally available
 - In NeuralDBs facts that form a single result set might be scattered around in the dataset.
- In QA typically the answer is, well... "an answer"
 Typically a single sentence, e.g., "Adam Vinatieri"
 - In NeuralDBs we should target both sets of answers, and aggregations (count, avg, etc.).

A Transformer Based Solution

- Transformers, e.g., BERT, have became ubiquitous in NLP.
- Introduced in the famous 'Attention Is All You Need' paper.
- It consists in applying (self-)attention to each token of a sequence of text, i.e., subwords.

Credits: Attention Is All You Need' by Vaswani et al.

How to train a Transformer LM

• Self-supervision on sequences of text, i.e., "Sentences".

Objective	Inputs	Targets
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling MASS-style Song et al. (2019) I.i.d. noise, replace spans I.i.d. noise, drop tokens	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week .</y></x></m></m></m></m></m>	me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last</z></y></x>
I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you <x> me to your party <y> week . Thank you me to your party week . Thank you <x> to <y> week .</y></x></y></x>	<pre><x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <</y></x></z></y></x></pre>

Credits: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Raffel et al.

Google's T5 (Text-to-Text Transfer Transformer) Model

Trained in a multi-tasking fashion on the following tasks: (i) *GLUE* and *SuperGLUE* meta-tasks; (ii) CNN/Daily Mail *Abstractive Summarization*; (iii) *SQuAD* Question Answering; and (iv) WMT English to German, French, and Romanian *Translation*

Neural Query Processing

- Task:
 - Given a query and a small number of facts from the database, can the T5 accurately answer queries that are posed in natural language, whose answer may require projection (i.e., extracting part of a sentence), join, and aggregation?
- Data: 7 different relationships from Wikidata extracted using a template
 - we generate a training, validation and held-out test set containing 535, 50, and 50 databases respectively
 - Each database contains *50* facts and has *100-200* QA pairs
 - In total: *60,000* training, *5,500* validation and *6,000* test instances
- Input: To provide input to the transformer, we jointly encode relevant facts from the database by concatenating them with the query (separated by a special delimiter token)

Some Example Queries

Facts: (8 of 500 shown)

- Nicholas lives in Washington D.C. with his wife.
- Sheryl is Nicholas's wife.
- Teuvo was born in 1912 in Ruskala.
- Sheryl's mother gave birth to her in 1978.
- Nicholas is a doctor.
- Sarah was born in Chicago in 1982.
- Sarah married John in 2010.
- Sarah works in a hospital in NY as a doctor.

Queries:

List everyone born before 1980. (Set) \rightarrow Sheryl, Teuvo, ...

Whose spouse is a doctor? $(\text{Join}) \rightarrow \text{Sheryl}, \text{John}, \ldots$

Who is the oldest person? (Max) \rightarrow Teuvo

Who is Sheryl's mother? (Set) \rightarrow NULL

Dataset Building

How to build Facts and Queries?

- Training a NL database requires supervision in the form of (D, Q, A):
 - *D* is a set of facts
 - Q is a query
 - A is the correct answer
- We generate training data in a controlled fashion by transforming structured data from Wikidata into NL facts and queries
- Pros:
 - Scale
 - Breadth

(Subject, Relation, Object) (Bezos, employedBy, Amazon)

Facts

- We "verbalize" knowledge graph triples that are synthesized through a sequence to sequence model
 - Data is from KELM, we generate a rule-based post-hoc mapping back to Wikidata considering: string similarity, and compatibility of the generated triple

Input Triples	Target Sentence
Das Tagebuch der Anne Frank, (distributor, Universal Pictures),	The film was theatrically released in the Germany on
(country, Germany), (publication date, 03 March 2016)	March 3, 2016, by Universal Pictures International.
Neff Maiava, (date of birth, 01 May 1924), (date of death, 21	Maiava (May 1, 1924 April 21, 2018) was an American
April 2018), (occupation, professional wrestler)	Samoan professional wrestler.
Barack Obama 2012 presidential campaign, (country, United	The 2012 reelection campaign of Barack Obama, the 44th
States), (end time, 06 November 2012), (start time, 04 April	President of the United States, was formally announced on
2011)	April 4, 2011.
Blue whale (parent taxon, Balaenoptera)	The blue whale (Balaenoptera musculus) is a marine
	mammal belonging to the baleen whale suborder Mysticeti.

Agarwal, O., Ge, H., Shakeri, S. and Al-Rfou, R., 2020. Large Scale Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training arXiv preprint arXiv:2010.12688.

Queries

- We generate queries using a number of templates for each property and question type
 - (X, bornIn, Y)
 - (X, employedBy, Y)
- We also "simulate" joins by "chaining" triples:
 - (Y, locatedIn, Z) \S (X, employedBy, Y) \rightarrow "Does \$X work at a company based in \$Z?"
 - (Y, marriedTo, Z) \S (Z, leavesIn, Y) → "Does \$Z's spouse leaves in \$Y?"
 - (Y, childOf, Z) \S (Y, bornIn, X) \prod (Y', bornIn, X') \rightarrow "Is \$Z's child younger than \$Y'?"
 - (Y, rel1, Z) §§ $(Z, rel2, Y) \rightarrow$ "Does \$Z's rel1 also rel2 \$Y?"

Example: Set	
Question	Who studied at University of Minnesota?
Supporting Facts	 [John B Totushek was born on 7 September 1944 in Minneapolis. He attended the University of Minnesota and became a US Naval Aviator. Mr. Totushek was also a human being.] [Melvin Maas graduated from the University of Minnesota and is buried at Arlington National Cemetery. He is a native of Minnesota and his language is English.] [Clarence Larson graduated from the University of Minnesota and is a member of the National Academy of Engineering.] [Ted Mann, who is the surname of Ted Mann, attended Duke University and the University of Minnesota. He is a human being.]
Answer	[John B. Totushek, Ted Mann, Clarence Larson, Melvin Maas]

Example: count	
Question	How many people work for Yale Law School?
Supporting Facts	 [Michael Ponsor, born in Oxford, graduated from Pembroke College in Oxford. He was awarded the Rhodes Scholarship and is an employee at Yale Law School. He is an expert in the field of human rights.] [Stephen Wizner is an American legal scholar who graduated from Dartmouth College and is a graduate of the University of Chicago Law School. He works at Yale Law School.]
Answer	2

Example: Min/Max	
Question	What is the largest yearly attendance?
Supporting Facts	 [The musee en herbe has a visitor per year of] 70000. [The total number of visitors to the Hirschsprung Collection is 71779 per year.] 24. [The Tate Modern has a visitor count of 5839197 visitors per year.] 25. [Catoctin Mountain Park attracts 221750 visitors per year.]
Answer	5839197

Example: Bool	
Question	Is North Carolina State University the employer of Wes Moore?
Supporting Facts	1. [Wes Moore is a human being who is employed at Francis Marion University and is a basketball player for North Carolina State University.]
Answer	TRUE

Example: Join	
Question	Who plays for a team in Ligue 1?
Supporting Facts	 [Thomas Allofs started his career in 1989 with RC Strasbourg Alsace. He finished his career in 1990., RC Strasbourg Alsace is an association football club in the Ligue 1 league. It was founded in 1906 and is located in Strasbourg, France.]
Answer	[Thomas Allofs]

NeuralDBs Architectures

A "Simple" Solution

Possible Issues

- When fed with relevant facts from the database, T5 can produce results with reasonable accuracy
- X Aggregation queries need to be performed outside of the neural machinery
- In order to handle queries that result in sets of answers and in order to prepare sets for subsequent aggregation operators, we need to develop a neural operator that can process individual (or small sets of) facts in isolation and whose results outputted as the answer or fed into a traditional (i.e. non-neural) aggregation operator.

Challenges

• Scale

- neural reasoning to databases of non-trivial size
 - In open-domain QA we usually complement the transformer reasoning with an IR component that extracts a small subset of the facts from the corpus
- Multiple answer spans
 - NDB might need to generate 100K facts and aggregate over them

• Locality and Document Structure

- Answers might be dependent on several facts scattered across the DB
- Multi-hop and Conditioned Retrieval
 - E.g., Whose spouse is a doctor?

The Neural DB Architecture

The Neural DB Architecture

Support Set Generator (SSG)

- Simple queries over single facts \rightarrow TF-IDF based IR
 - not scalable for joins, aggregation queries or for queries outputting a set of answers as generating relevant sets requires incremental decoding, conditioning on already retrieved facts.

Neural Select-Project-Join (SPJ)

- For support sets that are insufficient to answer a question, the operator should return no output.
- For queries that require short chains of reasoning over multiple facts, the SPJ operator joins the facts when generating the output.
- SPJ generates a projection of the fact to a machine readable format dependent on the task, query and fact.
- Depending on the query type:
 - \circ Boolean Answers \rightarrow binary value
 - $\circ \quad \text{Count/Set Queries} \rightarrow \text{entities}$
 - $\circ \quad \text{Argmin/max operators} \rightarrow \text{key-value pairs}.$
 - For example "Which place has the highest yearly number of visitors?" has the projection of the form: (place,number of visitors).

Examples of Neural SPJ Outputs

- Query: Does Nicholas's spouse live in Washington D.C.?
 - {Nicholas lives in Washington D.C. with Sheryl., Sheryl is Nicholas's spouse.} \rightarrow TRUE
- Query: Who is the oldest person in the database?
 - {*Teuvo was born in 1912.*} \rightarrow (Teuvo, 1912)
- Query: Does Nicholas's spouse live in Washington D.C.?
 - {Teuvo was born in 1912.} → NULL

Results: SPJ Performance

Mathad	Exact Match (%)				
Methoa	Count	Min/Max	Sets	Atomic	Joins
NeuralDB	79.45	100.00	91.91	97.90	79.29
TF·IDF+T5	31.06	0.00	44.25	98.05	68.02
DPR+T5	38.07	21.19	54.55	97.38	58.64

Exact Match

Baseline system score by query type

Exact match accuracy for different classes of queries for a transformer model encoding up to 25 facts in one input. The results show that the model obtains high accuracy for queries performing Boolean inference, but falls short for queries with aggregation or yielding set answers (top) over multiple support sets (bottom).

Results: SPJ Performance

-

Mathad	Exact Match (%)				
Methoa	Min/Max	Bool	Count	Set	
SPJ PerfectIR	88.3	99.8	90.1	89.4	
SSG + SPJ	87.3	99.8	90.1	89.6	

Using retrieved evidence achieves results competitive to the PerfectIR on a DB of 25 facts.

Results: SSG Precision/Recall

Query Type	Exact Ma	tch (%)	Soft Match (%)		
	Precision	Recall	Precision	Recall	
Boolean	85.12	94.04	85.39	94.04	
Set	61.05	94.58	61.33	94.58	
Count	57.88	96.15	58.00	96.15	
Min/Max	60.68	95.82	60.68	95.82	
Join	38.33	75.39	42.74	75.43	
Average	57.08	90.53	58.24	90.54	

Precision and recall of supervised SSG w.r.t. the reference set. Note that errors in retrieval do not necessarily translate to wrong query answers because the SPJ operator is trained to be robust to noise.

Results: SSG + SPJ Accuracy (different DB Sizes)

SSG+SPJ by support set size for all 5 databases. The SPJ is trained on databases of 25 facts and tested on larger databases. Low recall from SSG reduced answer EM for DBs of more than 1000 facts.

Conclusions and Future Work

• We described NeuralDB

- Using neural reasoning to answer queries from data expressed as natural language sentences that do not conform to a predefined schema.
- Our experiments show that NeuralDB attains very high accuracy for a class of queries that involve select, project, join possibly followed by an aggregation.
- We will need to investigate potential biases in our language model and the impact on NeuralDBs
- Identifying which updates should replace previous facts:
 - Mariah is unemployed \rightarrow Mariah works for Apple; vs.
 - $\circ \quad \text{Kasper likes tea} \rightarrow \text{Kasper likes coffee.}$

A Research Agenda

- Deeper understanding of semantics
- Multi-modal neural databases
- Obtaining training data and transfer learning
- Mitigating biases
- Applying neural components to existing data management architectures

How NeuralDBs could help Web Engineering

- Imagine a world where you make your web application interact with a user through natural language
 - You can let the user interact with your application by allowing them to add facts and preferences later used to enhance the personalized experience you offer to your users
- Imagine you want to expose your application through a "smart speaker"
 - A person might add personal facts to a local repository on their smart speaker and allow this set of fact to be used, for instance, to better understand and answer their requests