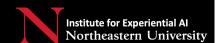
Bias on Web Systems

Ricardo Baeza-Yates Institute for Experiential AI Northeastern University Part of this talk appeared in CACM of June 2018

ICWE, May 2021



Institute for Experiential AI

What do we mean by Experiential AI?

- Al with human in the loop
- Al applied to real-world problems yielding pragmatic working solutions

Why we believe is EAI the right direction?

Much evidence that pragmatic working AI solutions have two characteristics:

1 **Human-in-the-loop:** ability to bring human decision-making, common sense reasoning into the solution operation

2 Strong dependence on Data: ML and DS to leverage more quality (big) data: "We don't have better algorithms... we just have more data"

What is Bias?

- Statistical: significant systematic deviation from a prior (unknown) distribution;
- Cultural: interpretations and judgments phenomena acquired through our life;
- Cognitive: systematic pattern of deviation from norm or rationality in judgment;

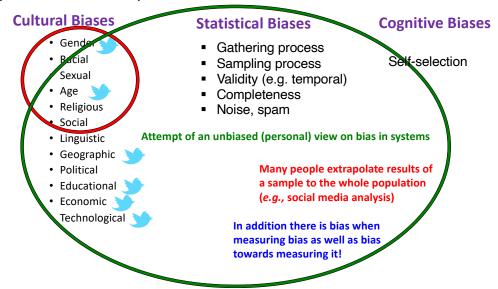
More than 100 cognitive biases!

10

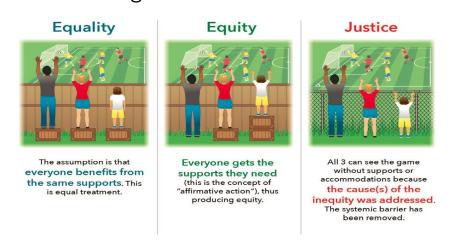
Motivation: Impact of Bias in Web Systems

- Most web systems are optimized by using implicit user feedback
- However, user data is partly biased to the choices that these systems make
 - Clicks can only be done on things that are shown to us
- As those systems are usually based in ML, they learn to reinforce their own biases, yielding selffulfilled prophecies and/or sub-optimal solutions
 - For example, personalization and filter bubbles for users
 - · but also echo chambers for (recommender) systems
- Moreover, sometimes these systems compete among themselves, learning also biases of other systems rather than real user behavior
- Even more, an improvement in one system might be just a degradation in another system that uses a different (even inversely correlated) optimization function
 - For example, user experience vs. monetization

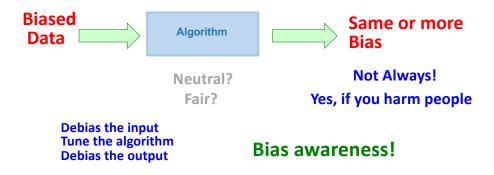
So (Observational) Human Data has Bias



What is being fair?



A Non-Technical Question



ACM US Statement on Algorithm Transparency and Accountability (Jan 2017)

- 1. Awareness
- 2. Access and redress
- 3. Accountability
- 4. Explanation
- 5. Data Provenance
- 6. Auditability
- 7. Validation and Testing

Systems do not need to be perfect, they just need to be (much?) better than us

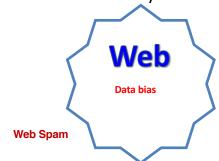
Bias in Computing Systems

- The quality of any algorithm is bounded by the quality of the data that uses (and hence of its users)
- Data bias awareness

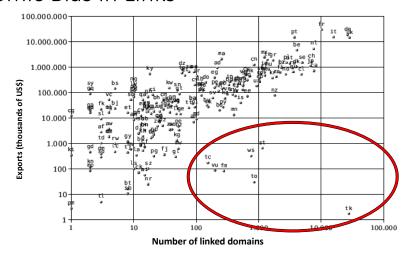
[Gordon & Desjardins; Provost & Buchanan, MLJ 1995]

- Bias in computing systems [Friedman & Nissenbaum 1996]
- Algorithmic fairness
- Key issues for Machine Learning
 - Uniformity of data properties
 - In the Web, distributions resemble a power law
 - Uniformity of error
 - Data sample methodology
 - E.g., sample size to see infrequent events or sampling bias

Bias on Web Systems



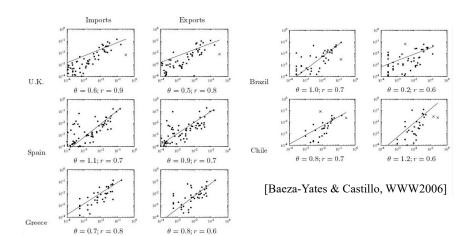
Economic Bias in Links

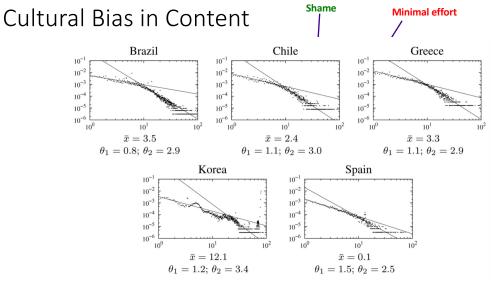


[Baeza-Yates, Castillo & López, 2005]

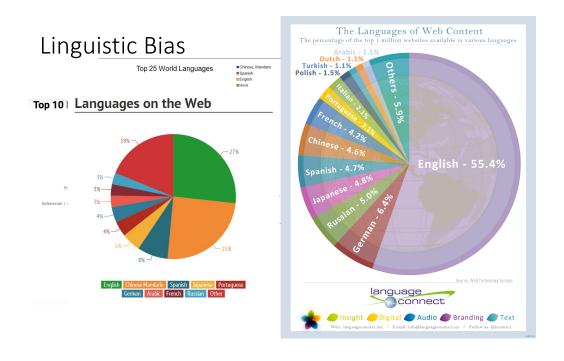
20

Economic Bias in Links





[Baeza-Yates, Castillo, Efthimiadis, TOIT 2007]



Gender Bias in Content

• Word embedding's in w2vNEWS

Gender stereotype she-he analogies.

sewing-carpentry register-nurse-physicianhousewife-shopkeeper interior designer-architect nurse-surgeon softball-baseball blond-burly feminism-conservatism cosmetics-pharmaceuticals giggle-chuckle vocalist-guitarist petite-lanky charming-affable sassy-snappy diva-superstar volleyball-football cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.

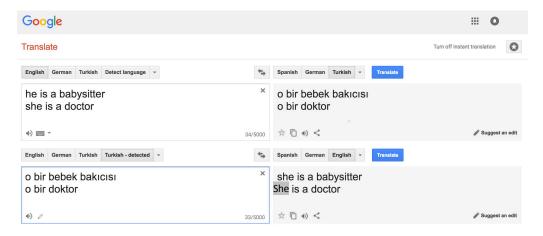
queen-king sister-brother mother-father waitress-waiter ovarian cancer-prostate cancer convent-monastery

Most journalists are men?

[Bolukbasi at al, NIPS 2016]

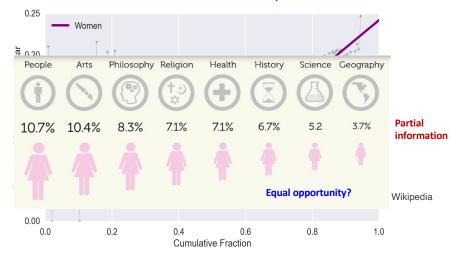
Yes, about 60 to 70% at work although at college is the inverse

Gender Bias in Translation



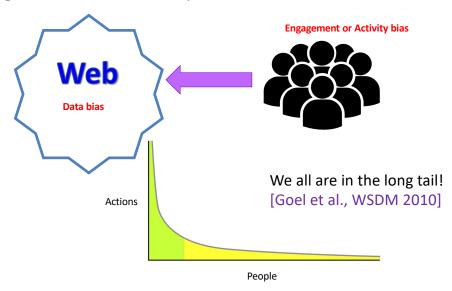
Gender Bias in Content

Systemic bias?

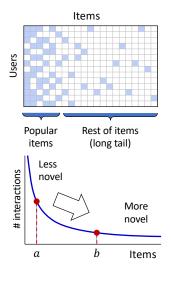


[E. Graells-Garrido et al,. "First Women, Second Sex: Gender Bias in Wikipedia", ACM Hypertext'15]

Engagement or Activity Bias



Popularity Bias in Recommender Systems

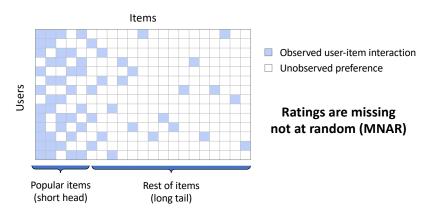


- Take care to recommended items that are not too popular
- Metrics $nov(i) = 1 \frac{\text{\# ratings of } i}{\text{\# users}}$
- Novelty enhancement
- Problem solved! ...really?

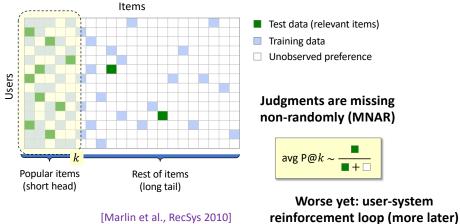
[Vargas & Castells, RecSys 2011]

Courtesy of Pablo Castells

A self-fulfilling prophecy?



A self-fulfilling prophecy?

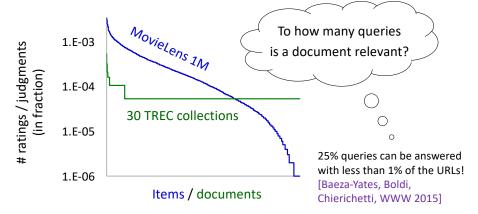


[Marlin et al., RecSys 2010] [Steck, RecSys 2010, 2011]

[Fleder & Hossanagar, Management Sciences 2009]

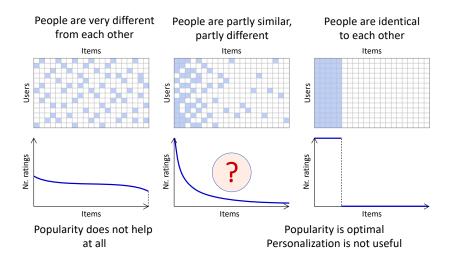
Courtesy of Pablo Castells

A problem for IR evaluation methodology!



[Bellogín, Castells & Cantador IRJ 2017]

How different or similar are we to each other?



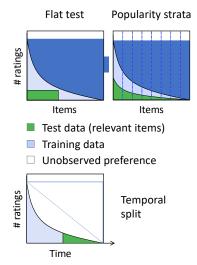
Courtesy of Pablo Castells

Get rid of the popularity bias!

- In the rating split [Bellogín, Castells & Cantador, IRJ 2017]
- In the metrics
 - Stratified recall [Steck, RecSys 2011]

best paper award]

- Importance propensity scoring [Yang et al., RecSys 2018]
- In the algorithms
 [Steck, RecSys 2011]
 [Lobato et al., ICML 2014]
 [Jannach et al., UMUAI 2015]
 [Cañamares & Castells, SIGIR 2018,

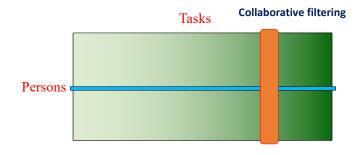


Recommending within the Long Tail

• Exploit the context (and deep learning!)

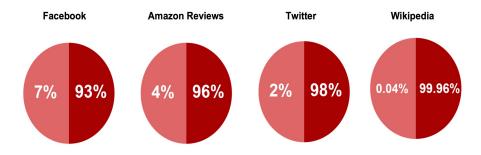
91% accuracy to predict the next app you will use [Baeza-Yates et al, WSDM 2015]

 Personalization vs. Contextualization Break the filter bubble! (more later)



Activity Bias also Affects Content

Most users are passive (*i.e.*, more than 90%) – wisdom of crowds is a partial illusion Hence, which percentage of **active** users produce 50% of the content?

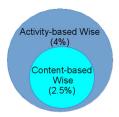


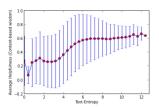
[Baeza-Yates & Saez-Trumper, ACM Hypertext 2015]

Social Bias

Quality of Content?

- Adding content ⇒ Adding Wisdom?
- We use Amazon's Reviews helpfulness
- Content-based-wise users

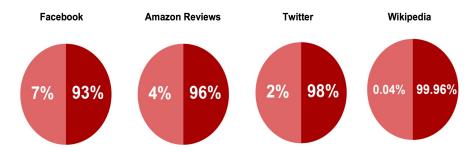




[Baeza-Yates & Saez-Trumper, ACM Hypertext 2015]

Wisdom of a Few?

Which percentage of **active** users produce 50% of the content? Similar to the 90-9-1 rule of Internet participation [Nielsen 2006]

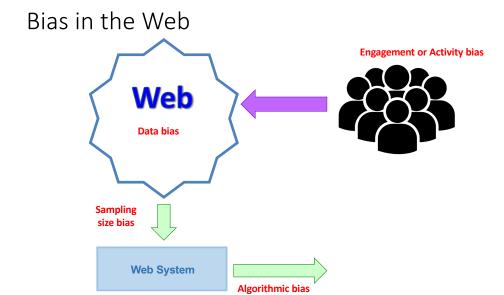


[Baeza-Yates & Saez-Trumper, ACM Hypertext 2015]

Attention Bias: The Digital Desert

1.1% of the Twitter content is never seen.*
31% of articles added/edited in May 2014 in wikipedia, were not visited in June.

[Baeza-Yates & Saez-Trumper, ACM Hypertext 2015]



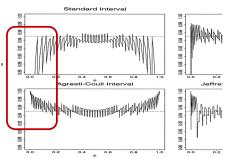
Sample Size?

- If we want to estimate the frequency of queries that appear with probability at least p with a certain relative error ϵ we can use the standard binomial error formula $\sqrt{(1-p)/np}$ which works well for p near $\frac{1}{2}$ but not for p near 0
- Better is the Agresti-Coull technique (also called take 2) which gives:

$$n \ge Z_{1-\alpha/2}^2 \left(\frac{p'(1-p')}{\epsilon^2} - 1 \right)$$

where Z is the inverse of the standard normal distribution, $1-\alpha$ is the confidence interval and $p'=p+Z^2/2$

• If $p = 0.1, 1 - \alpha$ is 80% and ϵ is 10%, we get n = 2342. The standard formula gives n = 900!



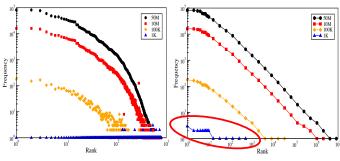
[Brown, Cai & DasGupta, Statistical Science, 2001] [Baeza-Yates, SIGIR 2015, Industry track]

Sampling Techniques

· Standard technique:

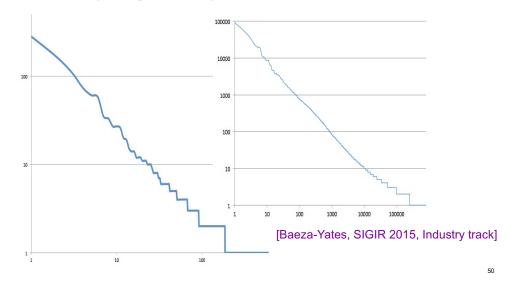
$$p_q \approx \widehat{p}_q(\mathcal{S}) = \frac{f_q(\mathcal{S})}{\sum_{q' \in \mathcal{S}} f_{q'}(\mathcal{S})}$$

A good sample should cover well all the items distribution but this
does not work with very skewed distributions.

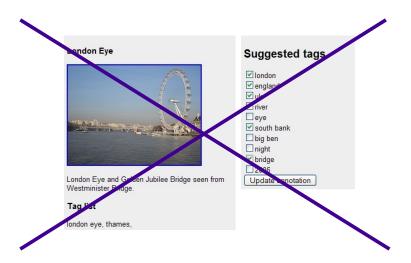


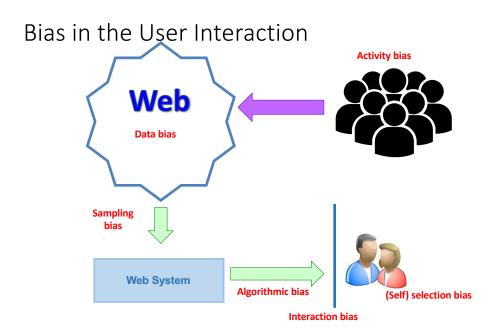
[Zaragoza et al, CIKM 2010]

Stratified Sampling Example



Extreme Algorithmic Bias



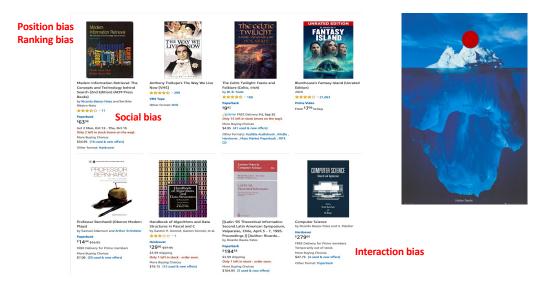


You will read this first

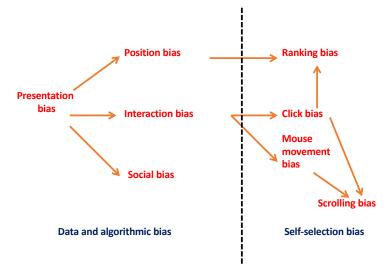
Then you will read this

Bias in the Interaction

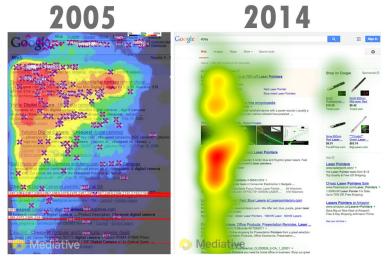
Exposure or Presentation bias



Dependencies: A Cascade of Biases!



Ranking Bias in Web Search



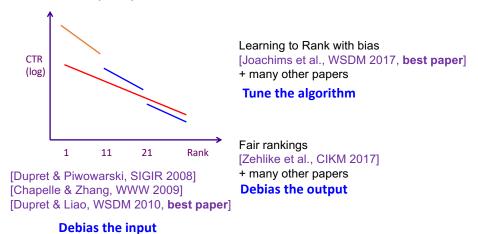
[Mediative Study, 2014]

Ranking Bias: Click Bias in Web Search

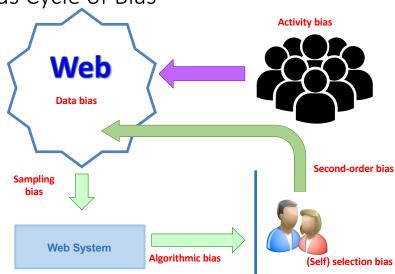
• Ranking & next page bias

Debiasing Search Clicks and Other Biases

Clicks as implicit positive user feedback

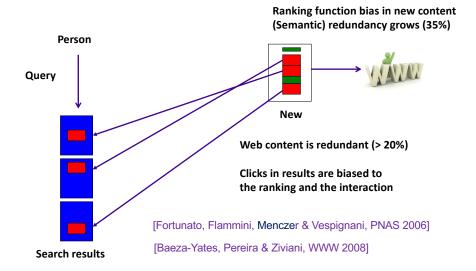


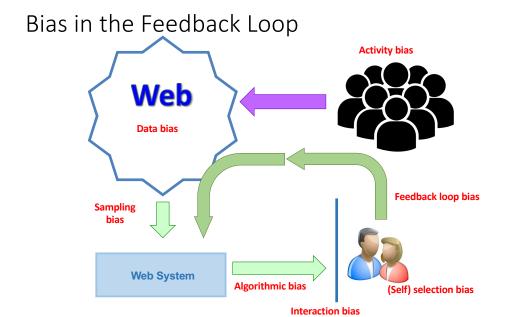
Vicious Cycle of Bias



Interaction bias

Second Order Bias in Web Content





Bias due to Personalization

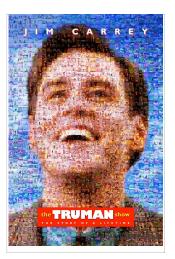
- Partially the effect of self-selection bias
- Avoid the rich get richer and poor get poorer effect
- Avoid the echo chamber by empowering the tail

Partial solutions:

- Diversity
- Novelty
- Serendipity
- · My dark side

Cold start problem solution: Explore & Exploit

How much exploration is needed to counteract exposure bias?

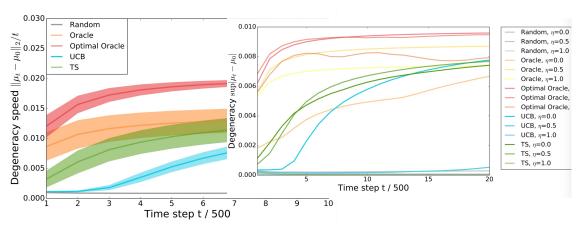


[Eli Pariser, The Filter "Bubble", 2011]

Echo Chambers in Feedback Loops

- For users
 - Filter bubbles
 - Degenerate feedback loops (e.g., YouTube autoplay)
- For systems
 - Short-term greedy optimization
 - The system is partly writing its own future (exposure bias)
 - Partial knowledge of the world if not enough exploration/traffic
 - The system itself is also in a bubble!

Users' Echo Chambers in Feedback Loops



[Jiang et al. Degenerate Feedback Loops in Recommendation Systems, AAAI 2019]

Echo Chamber of the Recommender System

- Short-term greedy optimization, partial knowledge of the world
- · Long-term revenue optimization is not achieved
- Disparate impact: unfair ecommerce/information markets
- Can we do better?
- Yes, if the amount of new traffic allows **enough** exploration for new items or any other changes in your world

 $\Delta Traffic \geq Approximate(\Delta World)$

• Otherwise we will live in a sup-optimal solution

Fairness and Ethics

- Consumers & long tail items/players are discriminated
- Matthew effect again: rich get richer, poor get poorer
- Unfair markets are unhealthy and hence less stable in the long term
- Internet Companies Antitrust Advertising Transparency
 - Amazon's Antitrust Paradox [Khan, 2017]
- Should marketplaces sell in their own marketplace?
 - Yes, but with regulations [Hagiu, Teh & Smith, 2020]
 - Is data asymmetry ethical? (not new, but gets amplified in e-commerce)
- Fair markets could be better revenue wise
 - Fairness trade-offs [Mehrotra et al., 2018]

Our Professional Biases

- Problems
 - Our big data and deep learning bias: small data is more frequent & harder
- Design and Implementation

[Baeza-Yates, KD Nuggets, 2018]

- Do systems reflect the characteristics of the designers?
- Do systems reflect the characteristics of the coders?
- Evaluation

[Silberzahn et al., COS, Univ. of Virginia, 2015]

Choose the right experiment

[Johansen et al., Norway, 2020]

- Choose the right test data
 - Pool bias in search test collections [Lipani et al., SIGIR 2015, CIKM 2016]
- Choose the right metric(s)
- Choose the right baseline(s)
- Julio Gonzalo's talk: http://tiny.cc/ESSIR2019-juliogonzalo

What we can do?

- Data
 - Analyze for known and unknown biases, debias/mitigate when possible/needed
 - Recollect more data for sparse regions of the problem
 - Do not use attributes associated directly/indirectly with harmful bias
- Design and Implementation
 - Make sure that the model is **aware** of the biases all the time
 - Let experts/colleagues/users contest every step of the process
- Interaction
 - Make sure that the user is **aware** of the biases all the time
 - Give more control to the user
- Evaluation
 - Do not fool yourself!

The Web Works Thanks to Bias!

- Web traffic
 - · Local caching
 - · Proxy/network caching

Activity bias

(Self) selection bias

- Search engines
 - · Answer caching
 - Essential web pages
 - 25% queries can be answered with less than 1% of the URLs! [Baeza-Yates, Boldi, Chierichetti, WWW 2015]
- E-Commerce
 - Large fraction of revenue comes from few popular items
 - But a large fraction of revenue goes to the marketplace owner

Final Take-Home Messages

- Systems are a mirror of us, the good, the bad and the ugly
- The Web amplifies everything, but always leaves traces
- We need to be aware of our **own biases**!
- We have to be aware of the biases and contrarrest them to stop the vicious bias cycle
- We should be fair
- Plenty of open research problems! (in small data even more!)

Questions?

ASIST 2012 Book of the Year Award (Biased Ad) Modern

Information Retrieval

the concepts and technology behind search

New Conferences that started in 2018:

AAAI/ACM Conference on AI, Ethics, and Society http://www.aies-conference.com

ACM FAccT: Fairness, Accountability, and Transparency http://facctconference.org

thier Ribeiro-Neto

Contact: rbaeza@acm.org
www.baeza.cl
@polarbearby

Biased Questions?